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An optimization strategy is presented for optimizing the structure of empirical 
thermodynamic correlation equations. Based on a comprehensive functional 
expression for the physical dependence considered, which is called a "bank of 
terms," the new procedure optimizes the structure and the length of the equa- 
tion as well. The application of this method results in an equation which meets 
the quality wanted for representing the experimental data with the lowest 
number of fitted coefficients. The procedure can be used for the determination 
of the structure of any equation where the method of the linear least squares is 
applicable. A'detailed description of the algorithm is given which includes values 
for the control parameters for different applications in the field of ther- 
modynamics (vapor pressure equations, equations of state, etc.) and also for 
applications in other fields. The optimization steps arc described using an equa- 
tion which represents a relationship between variables in a general form. It is 
demonstrated how even the complex problem of the optimization of a 
fundamental equation for the Helmholtz energy can be written in terms of this 
general equation. 

KEY WORDS: correlation equation; equation of state; least-squares principle; 
optimization method; search method. 

1. I N T R O D U C T I O N  

T h e  des ign  of  p rocesses  a n d  a p p a r a t u s  in the field of  c h e m i c a l  eng inee r ing  

a n d  ene rgy  t e c h n o l o g y  requ i res  effect ive e q u a t i o n s  for ca l cu l a t i ng  the  the r -  

m o p h y s i c a l  p rope r t i e s  of  the  w o r k i n g  fluid cons ide red .  O f  course ,  it w o u l d  

be  best  if  we h a d  simpJe e q u a t i o n s  wh ich  are  t heo re t i ca l l y  f o u n d e d  a n d  
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accurate enough over the entire fluid region. Since, however, statistical 
thermodynamics has not yet achieved such a standard, in most cases, one 
must use empirical equations which are based on correspondingly accurate 
experimental data covering the entire fluid region of interest. 

Examples of such empirical correlation equations are 

�9 expressions for thermal and caloric properties along the vapor- 
liquid coexistence curve (vapor pressure, densities and enthalpies 
of the saturated liquid and vapor); 

�9 equations for the activity coefficients or the excess Gibbs energy of 
fluid mixtures; 

�9 wide-range equations for the transport properties viscosity and 
thermal conductivity; and 

�9 wide-range equations of state which cover the entire fluid range 
including the vapor-liquid coexistence curve and the critical 
region. 

With this background, it is the purpose of this paper to present a safe 
and rapid method for optimizing the functional structure of empirical equa- 
tions representing a two- or more-dimensional relationship between the 
variables. The application of this method results in an equation which 
meets the quality requirement for representing the experimental data with 
the lowest number of fitted coefficients. 

Since we are engaged in the field of very accurate wide-range equa- 
tions of state for pure substances, we refer mainly to this example but the 
procedure is not limited to this application. 

Considering that the new procedure can be applied to establish any 
effective correlation equation (the method can also be used for the 
establishment of correlation equations in connection with any process 
calculations even if such an equation describes a multidimensional 
relationship between variables), the method is described in a general way. 
Only the example given at the end of this paper specifically relates to a 
vapor pressure equation and an equation of state explicit in the Helmholtz 
energy. 

As a first demonstration of the efficiency of the new procedure, a 
fundamental equation of state for water has been established by Saul and 
Wagner [ 1 ]. At present, we are using this procedure for establishing a new 
equation of state for methane [2]. 
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2. BACKGROUND AND PREVIOUS OPTIMIZATION 
PROCEDURES 

The structure of equatii~ns of state has ranged from simple cubic equa- 
tions having 2 [3, 4] to 5 [5] adjusted coefficients over the original 
Benedict-Webb-Rubin equation [6] with 8 coefficients and its extensions 
with 20 coefficients [7] up to very complex formulations with about 50 
terms [8, 9]. In most cases, these equations of state have not been 
optimized with respect to their structure. This means that the terms in 
these equations have been determined subjectively by experience or by trial 
and error. For the optimization of formulations describing two-dimensional 
problems such as vapor pressure equations, Wagner [10, 11 ] developed a 
special version of a stepwise regression analysis, which has been adapted by 
de Reuck and Armstrong [12] for the development of equations of state. 
Based on the knowledge that the regression analysis does not provide suf- 
ficient variability to optimize complex problems such as the determination 
of wide-range fundamental equations of state, Ewers and Wagner [13, 14] 
developed the evolutionary optimization method (EOM), a random search 
strategy which uses some principles from biological evolution. This method 
was used by Schmidt and Wagner [15] for establishing an equation of 
state for oxygen which was used to calculate the IUPAC tables on oxygen 
[16]. 

In our terminology, the optimization of the structure of an empirical 
equation means the development of effective functional expressions for the 
description of a relationship between experimental data which consists of 
the following steps. 

(1) 

(2) 

Establishing a general functional expression, the bank of terms. 
Any mathematical function, az, which can be considered to be 
significant for the description of the physical dependency should 
be included in the bank of terms. 

Selecting that combination of terms, ai, which yields the best 
description of the physical relationship with a minimum number 
of terms. 

During the last decade two different procedures have been used for the 
determination of the optimum functional expressions, the stepwise regres- 
sion analysis [10, 11] and the EOM [13, 14]. 

The regression analysis developed by Wagner [10, 11] selects the 
optimum combination of terms ai using statistical criteria. This method is 
purely deterministic, it is fast and has been used internationally for years, 
especially for the establishment of vapor pressure equations [17-23] and 
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equations of state [21, 24-27] from a bank of terms which did not contain 
more than 100 terms. 

To achieve a greater flexibility which is necessary for the development 
of effective longer equations of state from a large bank of terms (up to 700 
terms), a teachable random search strategy, the evolutionary optimization 
method (EOM), was developed by Ewers and Wagner [13, 14]. In con- 
trast to the stepwise regression analysis, which determines a single equation 
out of the bank of terms, the EOM optimizes a population of NP ,equa- 
tions simultaneously. As in the biological evolution, the EOM requires a 
large population and many generations for the determination of the 
optimum. Therefore it requires a lot of computer time. Another disadvan- 
tage is that this method is able to optimize the structure only for a 
predetermined number of terms in the final equation. Because of its 
complexity, the EOM has not been used by others. 

3. THE NEW OPTIMIZATION METHOD 

The new optimization method combines most of the advantages of the 
regression analysis [10, 11] and the EOM [13, 14] by satisfying the 
following requirements: 

(1) The resulting equation has at least the same quality as an equa- 
tion determined by using the EOM. 

(2) The structure and the length of the equation are optimized 
simultaneously. 

(3) The program consumes much less computer time than the EOM. 

3.1. Construction of the Regression Matrix 

Before starting the procedure one must formulate a convenient bank 
of terms. Since the new method requires information on the composition of 
the bank of terms and .on the experimental data in a special form (the so- 
called regression matrix), the structure of this matrix is presented in detail. 

In general, an experimental procedure yields a set of M data points 
(x, Y)m (m= 1, 2,..., M), where y denotes the dependent variable and 
represents a vector of independent variables Xk (k = 1, 2,..., K). Since these 
data (if, Y)m are subject to experimental errors we have to regard the data 
as estimates of  the true values Xk and Y of the unknown physical rela- 
tionship ~(.Y, Y)= 0. The goal of the empirical procedure for establishing 
equations is to determine a functional relationship ((~, y, ~) by using the 
experimental data in such a way that this relationship optimally 
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approximates the unknown physical relation ~ between the variables Xk 
and Y. This is expressed by 2 

~()(, Y ) = 0 ~ ( ( 2 ,  y, ~) (1) 

where ~ denotes a vector containing the estimates ni(i= 1, 2,..., I) for the 
coefficients of the I terms of the relationship used for the representation of 
the data set. Numerical estimates of the coefficients can be calculated using 
the maximum-likelihood method [28-31]. To obtain estimates of the 
values ni, one must minimize the weighted sum of squares 

((2, y, h)~ Z2= 
2 (2) A.a 

m = l  O'm 

where ((2, y, h) is a relationship between y and x k in which, as is necessary 
for the application of our optimization method, the ne must be linear in this 
function. A general form of this functional relationship can be expressed as 

where 

and 

I 

((2, y, ~) = a o -  ~ n i a i  (3) 
i=1 

ao=ao(2,  y) (3a) 

ai = a,(2) (3b) 

2 The variances o- m are calculated with the Gaussian error propagation 
formula 

2 2 x = ~r2 + ( ~ ' ~  (4) 
(Tm \Oyj  Ym k = l  \ ~ X k J  k ' m y = y m ,  Xk=Xk,  m 

where the Gy m and trxk.~ are estimates of the standard deviation of the 
dependent and independent variables for a data point (5, Y)m' The partial 
derivatives (t3(/@) and (d(/Ox) required for the evaluation of Eq. (4) are 
determined by using a preliminary equation for ((2, y, ri). 

For a given bank of terms with I elements, ai, and M data points, the 
minimization of ;(2 leads to I normal equations in I unknowns n i. The j t h  
equation can be represented by 

aj, m 1 a i ' m ? l i  = 2 2 (5 )  

m = 1 f f m  i 1 (7 m /I m = 1 f f m  

2 Definitions of symbols are given under Nomenclature (below). 
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where the coefficients a; are defined by Eq. (3). This can be represented in 
matrix notation as 

[A] [N]  = [Q] (6) 

where [A] is a square matrix with a general element 

M 
ai, maj ,  m 

a/j= ~ 2 (7) 
m = l  O'm 

[N] and [Q] are column vectors of the order/,  containing the ni and the 
right-hand side of Eq. (5), respectively. 

Constraints may be included using the method of the Lagrangian mul- 
tipliers as proposed by Hust and McCarty [32]. If it is required that the 
function ~(2, y, ~) fulfills C constraints, the quantity 

M - 2 C 
X 2 ~ (('~' Y, n)m 

= 2 F Y. ,~c~(X, y ,  ~)c (8) 
m = l  O'rn c = l  

must be minimized, where ~(~, y, ti)c is the function ~(~, y, ~) under the 
condition of the cth constraint (2 c is the cth Lagrangian multiplier). 

The weighted sum of squares Z 2 will be a minimum when the partial 
derivatives with respect to ni and 2 c are zero. The minimization with 
respect to n~ leads to I equations in I +  C unknowns. The following kth 
equation is typical: 

ak,___~m ae, mni + ~ ak, c2,= ~ '_-T' (9) 
m ~ l  O'm i = 1  ,] c = l  m = l  O'm 

with 

2" = ( - �89 2 c (9a) 

The derivatives of )~2 with respect to 2e yield C linear equations in I 
unknowns in which the cth equation can be expressed by 

I 

niai, c=ao,~ (10) 
i = 1  

(ai, c are the elements of the bank of terms under the condition of the con- 
straint). 

The combination of I equations of the form according to Eq. (9) and 
C equations according to Eq. (10) can be written in matrix notation as 

[A] [ C ] l [ [ N ]  1 [ [Q] 1 (11) 
[ C ]  T [0]_1L [X]_l  = L [ O c ] 3  
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where [C]  denotes an I x  C matrix that has a general element a~,c, [C]  T 
is the transpose of [C] ,  [0]  is a C x C null matrix, [4]  is a column vector 
of the order C that contains the Lagrangian multipliers 2'c, and [QC] is a 
column vector of the order C, where each element is the value of the 
function a0 under the condition of the constraint. 

From the elements of Eq. (11) and the single element S, which equals 
~2 as defined by Eq. (8), the following coefficient matrix is constructed: 

[B]= [C ]  T [0]  [ ] (12) 
[Q]T [QC]T IS]  ] 

where I-B] is a symmetric matrix of the order L = ( I +  C +  1). The new 
algorithm for the modified stepwise regression analysis needs only one part 
of the symmetric matrix [B].  In the next section the general elements of 
[B]  are expressed by the notation b o and i>~j. The subscripts i a n d j  refer 
to the ith row and j th  column of the matrix, with i>~j indicating the use 
of only the lower part of the symmetric matrix [B].  The notation bLi~ refers 
to the element IS] ,  which always contains the sum of squares •2 of the 
residual between experimental data and the values calculated from the 
correlation equation considered. 3 

For  the purpose of checking whether a term ai in the bank of terms 
is included in an equation or not, a column vector [IN] of the order I +  C 
is introduced. Each element of this vector refers to one term ai in the bank 
of terms. The value of an element INi changes from zero to one at the time 
when the corresponding term a~ is added to the equation. 

3.2. The New Algorithm 

Figure 1 presents a flowchart of the new optimization method. Before 
starting the procedure, according to step 1 in Section 2, one must formulate 
a convenient bank of terms; of. Eq. (3). Based on this bank of terms and the 
experimental data the regression matrix [B]  according to Eq. (12) must be 
calculated. 

The optimization process is carried out for a population of NP 
parameter vectors Pp (p = 1, 2 ..... NP), where the number NP has to be 
predetermined. 

The process starts with the establishment of the first set of the N P  
equations. Each component of a vector/5 represents the position i of a term 

3 Note that in the computer program the lower part of the matrix [B] should be stored in 
a one-dimensional field. This reduces the computer time significantly and saves computer 
storage. 
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a i in the bank of terms. The N components of each equation are randomly 
selected from the bank of terms, where N is an estimate of the maximum 
length which the equation might have. After the selection of the terms, the 
quality criterion X 2 is calculated. To achieve reasonable starting points on 
the optimization surface, it is necessary to repeat this initialization proce- 
dure N S  times for each equation of the population, yielding N S  possible 
parameter vectors for each equation. Values for the control parameters NP, 
NS, etc., are given in Table Ill. From each of the N S  attempts the equation 
with the lowest weighted sum of squares is selected. Those N P  equations 

1 Input: ~ a t r l x  [B] and 
control  parameters 

I 
I zl Initialization L-O 1 

" .oLo I 
I 

4 Selection of the starting combination 
for the regression analysis 

r 
S Start of the regression analysis 

with the predetermined terms 

L 
61 Addition of the most important term I [ i 

i m 

- i , i  ,~ i 
I 

qBlSignifi ...... fth .... fficients? I 

i 
Y 4101 Significance of the equation ? I 

~ m 

1 1  m 

I 
I ~ l . ~  

131 Significance of the coefficients ? I 

- , ~ . l ~ x c ~ a n g e p o s s i b l e , I  

I 
~ ~ 41~l Signi~i . . . . . .  ~t~e ogoatioo, tl 

~ F iJ 

II 

J 
I,Ol~qoationdetemioedl 

I 
NqlTlNRequationsdetermined? I 

i 
NqlS(C ..... g . . . . . .  L-LMAX? I 

Fig. 1. Flowchart of the  n e w  o p t i m i z a t i o n  m e t h o d .  
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with the smallest sum of squares form the parental generation L = 0. This 
step is called initialization; cf. box 2 in Fig. 1. 

The next important step in the new optimization method, the step 
"mutation," is modeled similarly to a procedure called "mutation" of the 
EOM [13, 14]. This mutation process is explained in connection with a 
simple example. 

In this example, from a bank of 100 terms, an equation with the terms 
5, 9, 30, 45, 60, 70, and 90 has been selected in the initialization step. 

For the purpose of improving the quality of the equation (parameter 
vector) by mutation, the following procedure is applied. 

(1) A random selection of a limited number of components Pn, old of 
the actual parameter vector P is made. The number of terms 
which have to be exchanged should not exceed N/2. 
For this example, the random number generator might determine 
that the terms 5, 30, 70 of the equation have to be replaced. 

(2) New values for these selected components P~,old are determined 
by alternately using the following two steps: 

(a) p , =  p,,old + z(O, a) (13) 

z(0, a) are normally distributed random numbers with the 
expected value 0 and a standard deviation a. In general, the 
normally distributed random numbers should cover a range 
from - 3 t o  +3. 
In the example, the term Pn, old : 5 is replaced by p,  = 7 if the 
random number generator yields z(O,a)= +2 for this 
exchange. 

(b) No restrictions are imposed on the selection of the new 
values p,  except the condition 

1 ~< Pn ~< I and P, ~ Po~,j ( j  = 1, 2,..., N) 

which means that the new value of p,  indicates any element 
in the bank of terms which has not yet been an element of 
the equation. 
In the example, P,,ol~ = 30 might be replaced by the element 
p,=98. 

In the example, p,,oza = 70 is replaced by p,  = 69, using again the 
procedure described under step a). In this case z(O, a) was -1 .  

(3) The quality determination is carried out by fitting the actual 
equation to the data. 
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In the example, the sum o f  squares ~new2 for  the mutant with the 
terms 7, 9, 45, 60, 69, 90, and 98 is determined. 

(4) 2 .< 2 If Z . . . .  Zo~d the old equat ion is replaced by the mutant .  

This procedure is applied N M  times to each equat ion at different steps 
during the optimizat ion cycle; cf. boxes 3, 7, and 12 in Fig. 1. 

N o w  there are N P  equations which represent N P  different points on 
the optimizat ion surface. Al though these equations might have different 
structures and qualities, there are always some elements ai which are pre- 
sent in several of the N P  equations in the populat ion.  In general, these are 
the terms which are most  impor tant  for the description of  the physical con- 
nection considered. With the assumption that  an equat ion with a small 
sum of squares (higher quality) contains more  of these impor tant  terms 
than an equat ion with a high sum of squares (lower quality), only N R  + 1 

Table I. Transformation of Matrix [B] for the Addition and Deletion 
of a Term Denoted by the Subscript k ~ 

Transformation Condition 

1 
ba=-~k k (1) i = j = k  

br = bU (2) i=k, j < k  
bkk 

b~ ( 1)~.+lu(i) bg=b~+ff'~k k - (3) i = j > k  

b2i 
b i j = b o + ~ ( - 1 )  c+lu(~ (4) i = j < k  

bij=b~+b! kbjk ( -1)  c (5) i>k, j>k,  i ~ j  
bkk 

b i j = b u + ~ ( - 1 )  c (6) i>k, j<k,  i ~ j  

bij=b~+bk.ib~J ( -1 )  c (7) i<k , j<k ,  i # j  
bk k 

l<<.i<<.L, I<~j<~L, i>~j 

or j = k , i > k  

a The difference between the addition and the deletion of a term in the algorithm is 

addition: e = 1 

deletion: e = 2 

The element bLL is treated as a normal element using condition (3) with IN(L)= O. 
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equations of the NP equations of the population are compared to deter- 
mine the most important terms. Therefore, in the next optimization step, 
"selection of the starting combination for the regression analysis" (cf. 
box 4) such terms, ai, are determined which appear NR + 1, NR  ..... 2 times 
in the N R  + 1 equations with the highest quality out of the NP equations 
of the population (NP = 5 and NR = 3 might be examples for these control 
parameters; cf. Table III). 

The next step in the optimization process is the application of the 
modified stepwise regression analysis. The regression matrix [B] already 
introduced provides the necessary information for the procedure. The algo- 
rithm for the stepwise transformation of the regression matrix presented 
here is a modification of the procedure introduced by Wagner [-10, 11]. 
The new algorithm allows the calculation of the coefficients, the standard 
deviation of the coefficients, and other statistical values using only half of 
the matrix [B]. Efroymson [33], Draper and Smith [34], and de Reuck 
and Armstrong [12] presented similar methods for the transformation of 
the matrix, but in general their algorithms require more computer storage 
capacity. The first regression run starts with incorporating those terms into 
the regression equation which appear simultaneously in the best N R  + 1 
equations of the generation. These terms are added to the equation using 
the algorithm presented in Table I. The necessary operations for the com- 
putation of new elements are given in the first column in Table I. The con- 
dition in the second column locates the elements in matrix l-B]. After the 
addition of the preselected terms, the element bLc of the matrix contains 
the sum of squares, i.e., the quality criterion for the equation. 

In the next step (cf. box 6 in Fig. 1), it is necessary to determine that 
term which should be included next. The procedure uses the relation 

)~ =bn CL =bo LL- bLibLi (14) 
, , h i  i 

to examine the effect of adding a further term ai to the regression equation. 
The subscripts n and o refer to the new and old sum of squares, respec- 
tively, and L equals I +  C + 1, which indicates the bottom line in the matrix 
[B]. The term which reduces X 2 by the greatest amount is then selected for 
inclusion into the correlation equation and is added to the equation using 
the algorithm presented in Table I. 

After adding the next term the mutation cycle described previously is 
repeated N M  times; cf. box 7. The calculation of the quality criterion of the 
mutants is not done by adding and deleting terms from the actual equation 
using the algorithm in Table I, because this would require too many trans- 
formations of the matrix I-B]. Instead of transforming the regression 
matrix, the following procedure is applied. 
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(1) At the beginning of the optimization process the original matrix 
[B] is copied onto a matrix [BB], the working matrix. 

(2) The appropriate elements, b~, of the working matrix [BB] are 
selected for the construction of a system of normal equations 
similar to Eq. (11 ). 

(3) These equations are solved for the coefficients ni by the use of 
standard procedures for the evaluation of linear systems of equa- 
tions. 

If any of the proposed mutants indicates a reduction in Z 2, then the 
regression equation is replaced by the mutant. This requires the transfor- 
mation of matrix [B] using the algorithm in Table I for adding and 
deleting terms. 

After each transformation of the regression matrix, statistical tests on 
the coefficients and on the equation as a whole are carried out. At first, the 
statistical probability that each coefficient n i which is already in the equa- 
tion differs from zero is tested by the Student t test. The standard deviation 
of each coefficient ni already in the equation is given by 

tTni = [bLL bu/( M _  Na) ] 1/2 (15) 

where M corresponds to the number of data points and Na refers to the 
number of terms in the actual equation at that time. For a coefficient ni, 
the Student t statistic is given by 

l'li - -  f l i  t~ = (16) 
(Tni 

where the value of n~ is given by the element bL~ of the matrix [B]. 
The probability, S~, that the coefficient n~ differs from zero (/?i = 0) is 

expressed by the statistical probability of the Student t distribution, 

where F is the gamma 'function and v defines the number of degrees of 
freedom v = (M-N,~). Equation (17) can be evaluated using a procedure 
from a convenient statistical computer package. 

The comparison of the value Se and any value, P,, between zero and 
unity specified by the correlator (cf. Table III) yields the criterion for the 
rejection of a term. If the Si value for any of the coefficients n~ falls below 
the chosen value P,, the term a~ related to the coefficient ni with the mini- 
mum value S~ is removed from the actual equation using the algorithm in 
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Table I, i.e., the hypothesis that the coefficient n~ is zero is accepted. This 
step is repeated until all values S,- exceed the assigned value Pt. A problem 
may occur if the term which has to be removed corresponds to the last 
term added to the equation. Such an elimination would result in an endless 
exchange of that term. To avoid this problem, the optimization step 
"exchange of a term" (cf. box 11) is applied in that case. This is explained 
in detail below. 

Since the equation has to be optimized in structure and length, it is 
necessary to apply a second statistical test which should indicate whether 
the equation has reached its optimum number of terms. The variance V of 
the equation as a whole is given by 

V= bLL/(M-- Na) (18) 

and the relation 

V_ =(bLL -~bLibLi~/(g--Na-~- 1) (19) 
1 bii J~ 

allows the calculation of the variance V_ 1 of the equation without the term 
ai, which has the minimum probability S i that its coefficient ni differs from 
zero. The statistical probability of the Fisher F distribution is calculated 
using the equation 

V 1-'~V V 1 

x [f(v ,-2)/2/(v+v lf)(~_~+~)/2 ] df  (20) 

where v is the number of degrees of freedom of the actual equation, 
M -  Na, v_ ~ is the number of degrees of freedom of the equation with the 
rejected term M -  Na + 1, and the Fisher F statistic is defined by 

F = V _ I / V  (21) 

Like Eq. (17), Eq. (20) can also be evaluated using a procedure from 
a convenient statistical computer package. Equation (20) provides a test of 
significance between the two estimates of the variances. If the computed 
value, S, falls below an assigned value PF, this is an indication either that 
the inclusion of the term with the minimum S~ value is not justified and 
that the final equation must contain N a -  1 terms or that an intercorrela- 
tion between several terms occurs. 

The decision whether this F test failed because of intercorrelations 
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between several terms of the regression equation or because the equation 
has reached its final length is made by the optimization step "exchange of 
a term" (cf. box 11). 

In order to remove the effect of intercorrelation between terms, the 
possibility of the exchange of a term from the equation with any term from 
the bank of terms is considered. Each term in the equation, except the last 
one added, is exchanged in turn with all remaining terms in the bank of 
terms. Since the effect on the sum of squares by each of the proposed 
exchanges is calculated using the algorithm in Table II, it is not necessary 
to transform the matrix [B]. 

Such an exchange which indicates the greatest reduction of the sum of 
squares is carried out by eliminating the appropriate term an from the 
equation and adding the term a m . After the exchange of terms and the 
application of the procedure to the random variation of the equation (see 
box 12), the test on the significance of the coefficients is repeated. If the 
equation contains a nonsignificant coefficient, the corresponding term is 
deleted and the optimization process is continued with the step "exchange 
of terms." If the t test shows that all coefficients are significant, then the 
exchange of terms is continued until no further reduction of the sum of 
squares can be achieved. 

After the completion of this optimization step, the significance of the 
equation as a whole is tested. If this test is passed, the procedure continues 
with the addition of a new term; cf. box 6. The regression run is completed, 
i.e., the equation has reached the optimum length, if no significant reduc- 

Table II. Calculation of the Sum of Squares Zmn2 of an Equation in Which 
the Term n Is Exchanged for a Term m from the Bank of Terms Which 

Has Not Yet Been in the Equation 

Condition 

m > n  m < n  

ben bran bLn brim 
C m = b L m  Jr- - -  C m = b L m  + " -  

bn. bnn 

dm=b~m + bin"2 a - ~  b~,. 
- -  - m - - v , . m + - ~  
a n n  ~nn  

b 2 
S S  = bEE + ~ Ln 

b nn 

2 
~ = S S  - c.._~., 

d ~  
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tion of the sum of squares is achievable, either by the addition of a term 
or by the exchange of terms. 

After the optimization of the first regression equation has been com- 
pleted, the modified stepwise regression analysis is started again until N R  
equations are determined, e.g., the second regression equation is optimized 
starting with those terms which occur NR times in the N R  + 1 equations 
with the minimum sum of squares of the parental generation. 

3.3. Constraints 

The treatment of constraints is similar to that of adding terms to the 
equation. As, initially, the original matrix [B] contains zero elements on 
its main diagonal, it is not possible to add the constraints at the beginning 
of a regression run. Therefore, the following procedure is applied. In each 
regression run the equation is optimized to its final length. Then as many 
terms as there are constraints are removed from the regression equation. 
The constraints are added using the algorithm of Table I with the restric- 
tion that the terms related to the constraints cannot be deleted from the 
equation during the regression run. After including the constraints, the 
optimization is continued in box 6 following the normal procedure. 

3.4. Convergence Criterion, Control Parameters, and Applications 

The first optimization cycle is completed after the determination of NR 
regression equations and the new parental generation is established by 
replacing the N R  equations with the lowest quality of the old parental 
generation with the N R  regression equations. It is important that each 
regression equation enters the population of the next generation even if it 
will not immediately lead to an improvement of the global quality of the 
generation. Since a difference in the quality of equations implies a difference 
of the structure (terms ai) of these equations, the incorporation of regres- 
sion equations with lower quality into the new generation effects the 
optimization step, "selection of the starting combination for the regression 
analysis," of the new generation. The use of the new starting terms for the 
next modified stepwise regression analysis may produce equations with a 
smaller sum of squares. Therefore, it is necessary that regression equations 
of lower quality enter the next generation. Based on this optimization 
feature, local optima which might be dead ends of the optimization process 
can be avoided. The whole optimization process is completed if the test of 
convergence (cf. box 18) indicates that all equations of a generation are 
identical or that a predetermined number of cycles has been reached. 

The optimization of functional structures of different thermodynamic 

840/10/6-2 
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Table III. 

Setzmann and Wagner 

Proposed Values of the Control Parameters for Different 
Optimization Problems 

Characterization of the problem I II III 

Maximum number of terms in an eq. 
Elements in the bank of terms 

Control parameters 
Number of eqs. in a generation 
Number of regression runs in 

each generation 
Number of start attempts for 

the initialization 
Number of mutations 
Probability value for the t test 
Probability value for the F test 

N 4 10 430 460 
I 4200 4400 4700 

I II III 
N P  5 4 3 

N R  3 2 2 

N S  60 60 60 
N M  60 60 60 
Pt 0.9999 0 .9999  0.9999 
Pv 0.9999 0.75 0.6 

problems, ranging from equations for the melting pressure [35] over equa- 
tions for the vapor pressure and orthobaric densities [36] and equations of 
state [1, 2] to correlation equations for the transport properties of oxygen 
[37], has verified the universal applicability of the new optimization 
method. It became obvious that all problems studied could be divided into 
three categories. These cases differ in the expected length of the equation 
and the number of elements in the bank of terms. Table III summarizes 
these categories and proposes values for the control parameters for all the 
problems considered. 

4. EXAMPLES 

Two examples are given in this section. First, the application of the 
new optimization procedure is shown by the example of the establishment 
of an effective vapor pressure equation. The second example demonstrates 
how the complex problem of an equation of state in the form of a 
fundamental equation.for the Helmholtz energy can be combined with the 
very general Eqs. (2) to (4). 

4.1. Establishing a Vapor Pressure Equation 

It is demonstrated how the new optimization procedure finds an 
optimized structure of a vapor pressure equation which represents a given 
set of 161 experimental vapor pressures of methane. The data and their 
experimental uncertainties were taken from a paper published by 
Kleinrahm and Wagner [203. 
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When establishing a vapor pressure equation, the first step is to for- 
mulate a comprehensive bank of terms. For this purpose, the following 
general bank of terms has proven to be very effective 
[10, 11, 17, 19-21, 23]: 

I 

In(p/pc) = (Tc/T) ~ ni(1 -- T/To) in (22) 

where p denotes the vapor pressure, T the temperature, and Tc and Pc are 
the critical temperature and pressure, respectively. With I =  21, the bank of 
terms contains 21 elements. 

If this example is combined with the general Eq. (3), then ~ and y 
correspond to T/To and ln(p/pc), respectively. Furthermore, it is 

a o = ln(p/pc)(T/Tc) (23a) 

a~= (1 - T/Tc) ~n for i =  1, 2 ..... 21 (23b) 

This example belongs to the first category of optimization problems 
given in Table III and the control parameters proposed for that category 
are applied. To present the complete optimization run in a single figure we 
used NP = 4 and NR = 2 instead of the values given in Table III. In addi- 
tion to that, the maximum number of terms N in the equation is set to four. 
Figure 2 presents the structure of the equations together with their 
weighted sum of squares Z 2 at the most important optimization steps. The 
structure of each equation is characterized by the position, i, of the corre- 
sponding term, ai, in the bank of terms. 

The optimization starts with the random selection of four equations. 
For each of the four equations 60 attempts are made to select its four 
terms. From each of the 60 attempts the equation with the lowest weighted 
sum of squares is selected. As a result of this initialization (cf. box 2 in 
Fig. 1), these four equations form the parental generation L = 0. After com- 
pleting the initialization the optimization step "mutation" is applied to 
each equation of the parental generation. This results in a set of equations 
with a higher quality than that of the parental generation. By comparing 
the structure of the three equations (NR + 1 = 3) with the smallest weighted 
sum of squares, those terms are determined which appear in two or in three 
equations at this optimization step. Now two regression runs are started. 
The first regression run starts with the addition of the terms which appear 
in N R + 1 equations, here the terms 2 and 3. In the second run the terms 
6 and 16 are added first to the regression equation. As a result of the 
optimization step "regression analysis," two equations are formed. The next 
generation (L = 1) is established in such a way that the two worst equa- 



tions of the old parental generation are replaced by the two regression 
equations. Now the new generation contains equations which have, on 
average, a better quality than those of the generation L = 0. The optimiza- 
tion cycle continues with the step "mutation" (box 3 in Fig. 1). This cycle 
is repeated until the convergence criterion is met or L---LMAX. It can be 
seen that all equations of the generation L = 3 have an identical form, and 
the convergence criterion is fulfilled. This final equation is identical with the 

Result of the 
in i t ia l izat ion 

1120 Setzmann and Wagner 

Result of the 
mutation 

Preselected 
terms 

Result of the 
~gression analysis 

New generation ] 

Result of the 
mutation 

Preselected 
terms 

Result of the 
~gression analysis 

Rew gonerat oo ] 

Result of the 
mutation 

Preselected 
terms 

Result of the 
egression analysis 

New generation ] 
(Convergence) 

Fig. 2. Example of the determination of a vapor 
pressure equation with the new optimization 
procedure. 
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vapor pressure equation given by Kleinrahm and Wagner [20] which was 
determined with the EOM. 

The application of the old stepwise regression analysis developed by 
Wagner [10, 11 ] which uses the same statistical criteria (Pt, PF) results in 
an equation with the terms 2, 3, 6, and 13. This demonstrates that even 
simple optimization problems are not always satisfactorily solved using the 
stepwise regression analysis. 

4.2. The Equation of State Explicit in the He|mholtz Energy 

The second example comes from the field of accurate wide-range equa- 
tions of state. Since recent forms of these equations are fundamental equa- 
tions for the Hdmholtz energy, A, such a form is also used here. However, 
the application of the general Eq. (3) to a function explicit in the 
Helmholtz energy is relatively complex because the function to be mini- 
mized with respect to the coefficients, hi, contains not only the terms of the 
general function itself but also the derivatives with respect to density or 
temperature depending on the property considered. Therefore, the applica- 
tion of Eq. (3) when fitting a Helmholtz energy equation to two selected 
thermodynamic properties (ppT data, cv data) is shown as follows. 

The dimensionless Helmholtz energy ~=A/(RT) is commonly 
separated into a part depending on the ideal gas behavior 4 ~ and a part 
which takes into account the real fluid behavior ~r, namely, 

~(c~, z) = ~~ z) + g~r(6, r) (24) 

where cS = P/Pc is the reduced density and t = Tc/T is the inverse reduced 
temperature, with po and T~ as the critical density and critical temperature, 
respectively. The equation for ~~ z) can be obtained from a correlation 
equation for the isobaric heat capacity in the ideal-gas state (cf. Wagner 
and de Reuck [16] and Saul and Wagner EI]). 

Again, the first step is to define the bank of terms for qsr(6, Z). For 
reasons of simplicity the bank of terms is expressed as a polynomial of 
and t, although, in reality, an effective form of such a bank of terms should 
also contain exponential functions of the type exp(-  6 i) (i = 1, 2,..., 6) com- 
bined with polynomials in ~ and t; for details see Schmidt and Wagner 
[15], Jahangiri etal. [21], and Saul and Wagner [1]. With this restric- 
tion, the bank of terms for ~ can be written as 

15 10 

,Y__, ,,jk (25) 
j = ,  k = ,  

This arbitrarily chosen bank of terms for the real part of the 
Helmholtz energy contains 150 terms. Sir,,ce the Helmholtz energy is not 
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accessible to direct measurements, it is necessary to determine the coef- 
ficients njk in any expression for ~b r which is a subsum of Eq. (25) by using 
such thermodynamic properties which are experimentally available. 

The use of more than only one thermodynamic property is called 
"multiproperty fitting," which is the state-of-the-art procedure for estab- 
lishing effective wide-range equations of state. The optimization procedure 
can be directly applied only if the ~2 depends linearly on the coefficients n,.; 
cf. the comment on Eq. (2). This means, transferred to the example given 
here, that only such thermodynamic properties can be considered which 
depend on ~r(6, z) and/or its derivatives in a linear way. This is valid only 
for ppT data, the condition for the phase equilibria between the vapor and 
the liquid phase (Maxwell criterion), second and third virial coefficients, 
isochoric heat capacities, and internal energies; cf. Ahrendts and Baehr 
[30, 31] and Saul and Wagner [1]. To avoid too much complexity the 
used properties are limited to ppT data and isochoric heat capacities 
Cv(p, T). Their relation to the real part of the Helmholtz energy is given by 

p = pRT(1 + 6r (26) 

cv/R 2 o r = - z  (~b** + ~b,) (27) 

where R is the gas constant and the abbreviations of the partial derivatives 
of q~o and ~b r are defined by 

r = (a,t, Ta6) , ;  q,,r _-- (C~2~r/0z2)a ,. ~,~o = (a2q~o/&2)a (28) 

Based on Eqs. (25) to (28), the general equations (2) and (3) can be 
specified as 

15 10 

~l[(p(qDr) ,  p m ,  T m ,  P m ] = a o ,  1 - ~ 2 Hjkajk, 1 ( 2 9 )  
j = l  k = l  

with 

and 

with 

aoo I = [pm/(pmRTm)-- 1]/~) m 
r �9 j - - l  k 

ajk, l =  q~a = (J) a , .  *m 

(29a) 

(29b) 

15 10 

~2[(p(~r), C . . . .  Tin, Pro] = ao,=- ~ 2 njkajk,= (30) 
j = l  k = l  

+ z ~ ,  - -  [ C v ,  m - c~ T,,,) ] /R ao,2= Cv, m/R 2 o 

ajk,2"= - - Z m ~ z z - -  --  OmT, m 

(30a) 

(30b) 
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where the subscript m denotes experimental information, c~  is the 
isochoric ideal-gas heat capacity at a temperature Tin, and q~(q5 r) indicates 
that the residuals ~1 and ~2 depend on the function q5 r and its derivatives. 
It can be seen that both residuals ~l[(P(~br), Pm, Tm, Pm'] and 
~2[-(p(cior), C . . . .  Tin, Pm] are linear with respect to the unknown coefficients 
njk. The corresponding two sums of weighted squares are expressed by 

MI 

Z~-- Z (31a) 
r n ~ l  

M2 

{GEq (q r), pro, T. . ,  2 2 P,.] } 

= , } / a 2 , , ,  (31b) 
m = l  

and the coefficients njk are determined by minimizing the sum 

z z = Z z + x  2 (32) 

To complete the picture, the fact should be emphasized that many 
thermodynamic properties (speed of sound, isobaric heat capacity, etc.) 
depend nonlinearly on q~r and/or its derivatives. If such "nonlinear" 
properties are to be taken into account when optimizing the structure of a 
fundamental equation ot~ the Helmholtz energy, then an iterative procedure 
of linearization can be applied. This was done in establishing the new 
equation of state for water [ 1 ]. 

5. CONCLUSION 

Based on the shortcomings of the known optimization methods, espe- 
cially in the determination of equations of state, a new procedure for the 
optimization of functional structure of thermodynamic correlation equa- 
tions has been developed. The combining of the most effective elements of 
the evolutionary optimization method and the stepwise regression analysis 
into a new concept allows the optimization of functional structures for all 
problems accessible to the linear-least squares technique. Furthermore, the 
algorithms given for the transformation of the regression matrix should be 
incorporated into existing stepwise regression procedures, allowing the 
optimization to begin from a larger bank of terms with the same amount 
of computer memory. 

Up to now, the new optimization procedure has been successfully 
applied to the establishment of vapor pressure equations, equations for the 
densities of the saturated liquid and vapor, wide-range equations of state, 
and wide-range correlation equations for transport properties. 
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NOMENCLATURE 

A 
EA] 
ai 

Ea~] 
b~ 
C 
Ec] 
c, i, k, m, n, p 
F 
I 
K 
L 
EIN] 
M 
N 
N~ 
NM 
NP 
NR 
NS 
[N] 
ni 
PF, Pt, S 
P 
P. 
P~ 
[Q], [QC] 
R 
S 
T 
t 
V, V 1  
x~ 
Xk 
Y 

Y 
Z 
[o] 
Z 2 

Helmholtz energy 
Matrix 
Element of the bank of terms 
Regression matrix 
Working matrix 
Element of the matrix [B] 
Number of constraints 
Matrix containing constraints 
Serial numbers 
Fisher F statistic 
Number of elements in the bank of terms 
Number of independent variables 
Order of the matrix [B] 
Vector 
Number of experimental data 
Maximum number of terms in an equation 
Number of terms in an equation 
Number of mutations 
Number of equations of the population 
Number of regression runs in each generation 
Number of start attempts for the initialization 
Column matrix of coefficients ni 
Adjustable coefficient 
Statistical probabilities 
Pressure 
Position of a term in the bank of terms 
Vapor pressure 
Column matrices 
Gas constant 
Weighted sum of squares 
Temperature 
Student t statistic 
Variance of an equation 
"True" independent state variable 
Independent state variable 
"True" dependent state variable 
Dependent state variable 
Normally distributed random number 
Null matrix 
Weigted sum of squares 
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& = P/Pc Reduced  dens i ty  

F G a m m a  func t i on  

2, 2'  L a g r a n g i a n  mul t ip l i e r s  
v Degrees  of  f r eedom 
p D e n s i t y  

= A / ( R T )  D i m e n s i o n l e s s  H e l m h o l t z  energy  

a S t a n d a r d  d e v i a t i o n  
a 2 Var i ance  

r = T c / T  Inverse  reduced  t e m p e r a t u r e  
State  func t ion  

Empi r i ca l  r e l a t i onsh ip  

Subscripts 

c C o n s t r a i n t ,  cri t ical  

i, j ,  k, m, n Ind ices  for t e rms  in  the  mat r ices  

n N e w  
o O l d  

Superscripts 

r Real  pa r t  

T T r a n s p o s e  of the m a t r i x  
- -  S ign for a vec to r  

~ Idea l -gas  s tate  
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